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Abstract. Many current systems security research efforts focus on mech-
anisms for Intrusion Prevention and Self-Healing Software. Unfortunately,
such systems find it difficult to gain traction in many deployment sce-
narios. For self-healing techniques to be realistically employed, system
owners and administrators must have enough confidence in the quality
of a generated fix that they are willing to allow its automatic deploy-
ment.

In order to increase the level of confidence in these systems, the
efficacy of a ’fix’ must be tested and validated after it has been automat-
ically developed, but before it is actually deployed. Due to the nature
of attacks, such verification must proceed automatically. We call this
problem Automatic Repair Validation (ARV). As a way to illustrate the
difficulties faced by ARV, we propose the design of a system, Blood-
hound, that tracks and stores malicious network flows for later replay in
the validation phase for self-healing software.
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1 Introduction

Finding and identifying malicious input, events, and output are the fundamental
tasks of intrusion detection systems. Constructing such systems and reasoning
about their properties are the major aims of intrusion detection research.

A key problem in this space is the inability of systems to automatically
protect themselves from attack. In order to have a reasonable chance at surviving
or deflecting current and emerging attacks, a system must incorporate automatic
reaction mechanisms. Recent advances in self-healing software techniques (we
refer the reader to Section 2 for in-depth coverage of this topic) have paved the
way for autonomic intrusion reaction. However, realistic deployments of such
systems have lagged behind research efforts.

The limits of detection technology have historically mandated that the short-
comings of intrusion detection (false positives and negatives, fail-open nature,



performance, etc.) be addressed before reaction mechanisms are considered – an
attack must be detected before any response can be mounted. In addition, many
system administrators are understandably reluctant to allow an automated de-
fense system to make unsupervised changes to the computing environment, even
though (and precisely because) a machine can react orders of magnitude faster
than a human.

1.1 Automatic Repair Validation

The unpredictable nature of attacks, the imprecision of detection mechanisms,
and the dearth of analysis for automatic response systems combine to foment
a lack of confidence and a justifiable degree of skepticism about the use of au-
tomated defense and self-healing systems. Thus, automatically-generated fixes
must be subjected to very detailed, rigorous, and intense testing in an automated
fashion. This problem is the essence of Automatic Repair Validation (ARV), an
area of intrusion defense research deserving of further exploration. It is important
to note that we are not advocating relinquishing human oversight, but rather ad-
vocating the reduction of human involvement (and response time) in the critical
path of protection.

The ARV concept includes the automation of a variety of tests, including:

– an installation test that both performs and checks the application of the
fix or patch to the protected system (e.g., configuration changes, compilation
from source, assembly, relinking, or binary rewriting/patching)

– a series of unit regression tests to verify that the fix has not introduced
any new errors or changed the normal operation of the system

– a series of end-to-end regression tests on both normal and malformed in-
put to verify that the “healed” system behaves as expected when interacting
with external components

– an efficacy test to show that the fix protects against the input that triggered
the self-healing procedure

While the first three types of tests are standard best practices for software
engineering, it is the efficacy test that we are particularly concerned with. It
entails the identification and replay of the attack inputs. However, identifying
these inputs is challenging; they may not have been captured correctly (or at
all) by the defense instrumentation.

The challenge is increased if the input is contained in network traffic – data
that many humans find difficult to rapidly classify, analyze, and understand “by
hand.” Performing automated testing in a manner that is transparent to the
application is even more difficult.

Even in the face of these challenges, performing the efficacy test is worthwhile
because it provides some assurance that the “healed” application is actually more
resilient to attack.



1.2 Contributions

This paper makes the following three main contributions:

1. the identification of the problem of Automatic Repair Validation (ARV),
which is the problem that Self-Healing Software faces when trying to validate
the results of its self-healing mechanisms.

2. the recognition of the need for developing high-quality, widely used bench-
marks and standards for assessing the response of a self-healing mechanism.
ARV is an attempt to frame the discussion about formal testing and analysis
of self-healing techniques; such analysis in the literature is self-selected and
not easily reproducible.

3. an overview of the challenges faced by ARV-capable systems, especially in
a networked environment. This overview provides the broad outlines for a
research agenda.

We also provide a summary of current literature on self-healing systems and
network capture and replay tools. Finally, we consider the design of an ARV sys-
tem (Bloodhound) dealing with attack input that is contained in network flows.
For example, Bloodhound is designed to act as the ARV component of a system
for dynamically containing buffer overflows [17] in network-facing services.

Although the general ARV problem exists for many types of systems, this
paper focuses on the challenges for an ARV system that monitors network-centric
applications. Network-centric applications are popular targets for attack due to
the relative anonymity an attacker has and the ease with which input can be sent
to the system. The complexity of networked systems tends to be greater than
other systems – this more complicated problem domain is useful to illustrate the
array of possible challenges faced by an ARV system.

2 Related Work

The classification of input and events is the fundamental purpose of intrusion
detection systems, and ARV is predicated on appropriately classifying system
input. The primary task of network-based intrusion detection systems is to scan
network packets and flows for content that matches known signatures or falls
outside the range of the normal model of traffic [24] [8]. The goal of ARV is to
further classify suspected malicious flows, correlate them with failures and fixes,
and then faithfully replay the relevant flows that triggered the initial exploit or
vulnerability detection instrumentation.

2.1 Identifying Malicious Traffic

The first crucial task for an ARV system is to keep track of input that is poten-
tially malicious and correlate it with events that are produced by the self-healing
instrumentation. In order to classify malicious input, a network-centric ARV sys-
tem can take advantage of a variety of NIDS, but the quality and nature of its



classification will change based on the actual system in use. For example, misuse
detectors (e.g., Snort’s primary use case) that rely on signatures to detect mali-
cious traffic will be unable to tell the ARV system about new attacks. Instead,
ARV will only be able to validate repair of attacks that are already well-known
enough to have a signature. Since such signatures are often manually created, it
seems somewhat futile to base an ARV’s classification capability on these types
of misuse detectors – unless the signature is automatically generated as well,
something that several systems [6] [19] [12] [11] [9] [25] [10] aim at doing.

To generate a signature, most of these systems either examine the content
or characteristics of network traffic or instrument the host to identify malicious
input. Two other interesting systems take a hybrid approach and seek to perform
host-type processing on network flow data.

The key idea of Abstract Payload Execution (APE) [22] is to identify network
traffic that contains malicious code by treating the content of a logical packet (in
their experiments, an HTTP request) as machine instructions. Abstract execu-
tion (essentially instruction decoding) of various snippets of packet payload can
help to identify the sledge (also known as a sled) – the sequence of instructions
in an exploit whose sole purpose is to guide the program counter toward the
actual meat of the exploit code. The main hypothesis is that a relatively long
sequence of successful decodings of bytes indicates a sledge. Their experiments
with “normal” traffic reveal very short (average of about 4, maximum of 16)
executable byte sequences. In contrast, the tested exploits contained executable
sequences on the order of hundreds of bytes long.

In [2], the authors present a system for detecting exploit code inside network
flows. The exposition of the challenges involved complement the issues we raise
in this paper. The authors discuss the use of convergent static analysis, a limited
form of disassembly and binary interpretation that aims at revealing the rough
control and data flow of a random sequence of bytes. This technique is similar
to [7]’s proposal to detect polymorphic worms by learning a control flow graph
for the worm binary.

2.2 Replaying Traffic

The ability to replay traffic is the second crucial aspect of a network-centric ARV
system. Hong and Wu [5] describe the design and implementation of a system
that can interactively replay network traffic. While TCPopera is broadly applica-
ble to problems that require the ability to quickly and repeatedly produce large
amounts of realistic network data (testing new applications, protocols, network
stacks, etc.), it is particularly well–suited to ARV. In fact, the authors mention
the related problem of testing Intrusion Prevention Systems (IPSs) as a useful
application of TCPopera. One advantage of TCPopera is that the system care-
fully avoids generating side-effect “ghost” packets during replay, and it faithfully
reproduces the timing semantics of the original traffic.

The major challenges in reproducing network traffic depend on which of the
two major approaches to traffic generation is selected. First, the raw packet
streams can be recorded and replayed, but this approach lacks finesse because



it treats packets as black boxes. Thus, it is difficult to adjust or modify the
parameters to reflect realistic test conditions. In addition, it may require large
amounts of storage. The second approach is based on building an analytical
model of traffic and then generating traffic that matches these characteristics.
While this approach avoids the cost of storing large amounts of data and provides
flexibility in configuration, the predictions of the model may not be correct.

The RolePlayer system of Cui et al. [4] tackles the problem of reconstructing
and mimicking application-level messages from network flows with very little
contextual data and a few guiding heuristics. One of the use cases for RolePlayer
that the authors mention is as a way to drive testing of network defense systems.

2.3 Self-Healing Software

ARV is only meaningful if a system incorporates or is protected by a self-healing
mechanism. Most of these mechanisms follow what we term the ROAR (Recog-
nize, Orient, Adapt, Respond) workflow. ARV is a logical and important part of
the “Respond” stage: verification of the system adaptation.

Self-healing mechanisms are the subject of active research efforts. Rinard et

al. [15] have developed compiler extensions that insert code to deal with access
to unallocated memory by expanding the target buffer (in the case of writes)
or manufacturing a value (in the case of reads). This technique is leveraged for
failure-oblivious computing [16].

A related idea is that of error virtualization, which forms the basis for the
self-healing mechanism in STEM [18], an emulator that performs transactional
monitoring of application functions. The key assumption underlying error virtu-
alization is that a mapping can be created between the set of errors that could
occur during a program’s execution and the limited set of errors that are explic-
itly handled by the program code. By virtualizing the errors, an application can
continue execution through a fault or exploited vulnerability by nullifying the
effects of such a fault or exploit and using a manufactured return value for the
function where the fault occurred.

The Rx system [14] seeks to improve on the error virtualization and failure
oblivious computing approaches by performing only safe perturbations of ap-
plication state to self-heal. The key idea of Rx is that when an error occurs,
execution should be rolled back and replayed, but with the process’s environ-
ment changed in a way that does not violate the API’s its code expects. For
example, the result of malloc() must be a buffer of at least the requested size,
but that buffer may be located at a different offset than the original, be padded
at both or either end, or be cleared to zero. This procedure is iterated over, with
’fixes’ becoming more expensive, until execution proceeds past the detected error
point. The error and the transparent environment fix are then recorded for the
programmer to debug. This is a clever way to avoid the semantically incorrect
fixes of failure oblivious computing and error virtualization.

DIRA [20] is a compiler extension that adds instrumentation to keep track
of memory reads and writes and check the integrity of control flow transfer data



structures. If the integrity fails, then the changed data is extracted and a network
filter is created from it. Execution is recovered to a safe state.

There are a number of systems that are closely related to DIRA’s basic goals.
Liang and Sekar [9] and Xu et al. [25] concurrently propose using address space
randomization to drive the detection of memory corruption vulnerabilities and
create a signature to block further exploits of this type. In addition, to improve
detection, such errors are correlated with program state. FLIPS [10] is a system
that attempts to self-heal by providing feedback to an anomaly detector to block
confirmed code injection attacks. FLIPS uses instruction set randomization to
detect injection attacks and employs STEM’s [18] error virtualization to self-
heal. The idea of Shadow Honeypots [1] is a similar proposal.

Vigilante [3] is a system motivated by the need to contain Internet worms. To
that end, Vigilante supplies a mechanism to detect an exploited vulnerability.
A major advantage of this vulnerability-specific approach is that Vigilante is
exploit-agnostic and can be used to defend against polymorphic worms. While
Vigilante doesn’t address the self-healing of a piece of exploited software, it
defines an architecture for production and verification of Self-Certifying Alerts
(SCA’s), a data structure for exchanging information about the discovered vul-
nerability. Vigilante works by analyzing the control flow path taken by executing
injected code.

The pH system [21] is an automatic reaction system that is aimed at frus-
trating an attacker by using system call interposition to slow down an attacker’s
code. While not strictly self-healing, this system was among the first to propose
an active reaction mechanism to foil attacks, and is representative of the seminal
work in artificial immune systems.

Song and Newsome [13] propose dynamic taint analysis for automatic de-
tection of overwrite attacks. Tainted data is monitored throughout the program
execution and modified buffers with tainted information will result in protec-
tion faults. Once an attack has been identified, signatures are generated us-
ing automatic semantic analysis. The technique is implemented as an extension
to Valgrind and does not require any modifications to the program’s source
code. However, like other binary rewriting or emulator-based approaches, it suf-
fers from a significant performance degradation. The authors extend the system
[11] with vulnerability-specific execution filters (VSEF), an idea with a different
mechanism, but similar goals to Shield [23].

Finally, it is important to distinguish between secure self-healing systems
and Intrusion Prevention Systems, as ARV is meant to be used in conjunction
with the sort of systems mentioned in the literature. On the other hand, IPS,
at least as it is realized in commercial systems today, is only one primitive form
of self-healing. The holy grail of research in self-healing software is a system
that automatically recognizes previously unseen attacks (and their polymorphic
variants) that exploit previously unknown vulnerabilities, prevents or undoes
any damage incurred from the malicious input, and alters itself to defeat future
instances or variants of the attack – all without having any detrimental impact
on normal operation.



In contrast, the state of the art in IPS essentially deploys coarse network
filtering rules based on recognizing a signature of malicious traffic. The research
literature highlighted above describes more comprehensive approaches, and it is
these approaches that ARV is meant to be used with. Something as straightfor-
ward as testing whether or not a network switch is blocking a host infected with
Code Red from sending messages to other hosts on port 80, although entirely
within its scope, is not the primary goal of ARV.

3 Approach

Assuming that a system exists for generating a self-healing patch or fix, the
primary goal of an ARV-capable system is to automatically validate a system’s
newly “healed” configuration. In order to automatically employ this fix, the ARV
must ensure two properties. First and foremost, the fix must defend against the
actual attack input that initiated the self-healing process. Second, the patch
must not interfere with the normal operation of the system.

While the second problem can be addressed by traditional regression test-
ing, the first problem remains unsolved, primarily because of the difficulty of
obtaining the attack input. Although one potential approach is to use the audit
information available from IDS software as hints to focus the search, there are
a number of challenges to be dealt with when solving this problem.

3.1 Challenges

A system cannot maintain an indefinite log of traffic. Even if such a log were
available, searching through it may be a lengthy process and thus slow the au-
tomatic deployment of a fix. Furthermore, it is moderately difficult to identify
traffic that is related to a particular alert. If the log only contains alerts, the
information contained in an alert is often not detailed enough to reconstruct the
packets of the attacking flow(s).

A simple approach would be to replay the entire traffic log to ensure that the
attack packets are replayed, but it is most likely not necessary or expedient to
replay (for example) three months of traffic, particularly if the attack is contained
in one or two recent flows of only a few packets each. In addition, replaying an
entire traffic log may represent an exorbitant use of resources, especially on a
busy server.

Regardless of the specific mechanisms used, this process should be as trans-
parent as possible to the attacked application. However, the cost of transparency
may be quite high, requiring entire mirror networks to be set up (either a priori

or on the fly) to provide a testbed.
Finally, the replay must balance the tension between fidelity to the original

stream and the current state of the world. While this problem can potentially be
solved by creating an isolated virtual network in which to replay traffic against
checkpoints of the application, care must still be taken in selecting which state
to preserve or retain.



3.2 Bloodhound

The three main tasks of Bloodhound are to (a) preferentially record network
traffic, (b) search through recorded flows, and (c) replay the appropriate flows
to test the auto-generated fix. There are a number of ways to preferentially
record flows. One simple approach is to only record those that match signatures
of known malicious content (such as known worm signatures). Another is to
use an AD like PayL [24] or Anagram to mark flows that are anomalous with
respect to the normal model of traffic for the host. Systems like APE (and
the related control flow graph modeling) can also be used. Tools like tcpdump,
TCPopera, TCPrecord, RolePlayer, or TCPflow are useful for actually recording
and/or replaying traffic. A more elegant solution can involve marking variables
or memory locations as tainted by particular packets.

3.3 Caveats and Limitations

Automating a response strategy is difficult, as it is often unclear what a program
should do in response to an error or attack. A response system is forced to antic-
ipate the intent of the programmer, even if that intent was not well expressed or
even well-formed. Ideal computing systems would recover from attacks and errors
without human intervention. However, the state of the art is far from mature,
and most existing response mechanisms are external to the system they protect.
Some simply crash the process that was attacked (and do nothing to fix the
fault, thereby ensuring that the system is still vulnerable when it is rebooted).
Other systems may restrict network connectivity or resource consumption. The
main challenge of ARV is to provide some evidence that an automated response
at least protects against input the triggered the self-healing mechanism.

The Bloodhound system faces two types of difficulties. The first is the hori-
zon problem: malicious input may have entered the system before Bloodhound
started operating. Additionally, Bloodhound may be unable to keep a record
of all malicious flows due to physical memory limitations. The second problem
involves correlating the form of input that triggers the self-healing instrumen-
tation with the input that originally enters the system. Input may have been
transformed by the system a number of times before it is finally recognized as
malicious. There may be no way to transform the input back to its original form,
and an ARV system may find it difficult to correlate a particular host-based event
with malicious network traffic.

However, these hybrid ARV systems (those that examine both network and
host-based data) still stand a better chance than a system that only consid-
ers either type of information in isolation – many host-based instrumentation
mechanisms would be completely unable to reconstruct the original input (or
a suitable representation thereof) because they either do not actually capture
the attack input, or the input has undergone difficult-to-reverse transformations.
ARV systems that examine network traffic in addition to host-based events are
in a position to record the input before it is used by the application. Unfor-
tunately, this capability is also a liability, especially in the case of encrypted



traffic. Therefore, a hybrid approach that treats the application as a gray box
needs to be employed. One promising solution is to tag various packets with the
addresses of the memory locations and data fields it causes to change. This sort
of capability should be standardized as a feature of application execution, either
as instrumentation added by a compiler or as an operating system service.

Another potential criticism of Bloodhound is that it appears to be exploit-
specific and therefore doesn’t perform as well as vulnerability-specific systems
like Vigilante, Shield, or VSEF. These systems make the excellent point that
exploit-specific protection is ineffective against polymorphic malware, and as a
result, research efforts should concentrate on developing vulnerability-specific
and exploit-generic defense mechanisms.

While Bloodhound’s primary operational goal is focused on identifying a par-
ticular exploit input, its task does not conflict with the goals of exploit-generic
defense systems. Instead, the protection that is offered by the self-healing mech-
anism can be vulnerability-specific, but Bloodhound can provide these systems
with more confidence that the fix is correct and blocks at the very least the ma-
licious input that triggered their instrumentation. Future work on Bloodhound
can look into using the input traffic as a template to generate other semantically
correct instances of the flow (this sort of task is exactly what the RolePlayer
system is designed for).

4 Design

We divide attacks into several broad categories to make it easier to analyze
techniques for identifying flows to replay. The categories allow us to compare
techniques based on which categories of attack they will replay.

4.1 Classes of Attack

The simplest attacks are those for which the entire attack is encompassed by a
single TCP flow. These are the most common attacks today; typical examples are
worms like Slammer or Blaster. The attacker opens a TCP connection, transmits
the exploit code, and then closes the connection. The entire flow must be replayed
during testing.

In a slightly more complex version, the attack may only be a subset of a
larger, innocent flow. Consider an SSH connection where the attacker behaves
innocently for several hours and then runs an exploit. The subset of the flow that
must be replayed during testing is only a very small portion of the total flow.
It is possible to replay the entire flow during testing, but we differentiate this
class of attacks from the previous because, for example, it may not be desirable
to store all of a long-duration flow if only a portion is suspicious.

An attack may be spread out across multiple TCP flows, each of which taken
on its own appears innocent. Consider a hypothetical attack where one TCP flow
overflows a buffer and a second flow delivers the remainder of the exploit. An
attack of this form could be distributed over arbitrarily many flows, and all of



those flows must be replayed during testing. To further complicate this attack,
the malicious flows may be distributed over time, with days or weeks between
each flow.

An attack may be contained within the timing relationship between multiple
flows, or the timing relationship between packets of a single flow. Attacks of this
form exploit race conditions in multi-threaded code, and recreating the circum-
stances of race conditions is notoriously difficult. At the very least, the timing
relationship between the packets or flows must be preserved for testing. This
requirement presents difficulties for a rapid automatic response, as deployment
time is constrained by characteristics of the attack – parameters that are under
the control of the attacker.

An attack may be polymorphic. That is, the algorithm for generating the
exploit code may use cryptographic or other heuristics to change the form of
the attack over time. Attacks of this form cannot necessarily be identified by
searching a flow or flows for particular bit patterns.

Finally, the attack may depend on innocent user action. Consider an exploit
where the adversary sends an attack packet, followed by 100 innocent requests,
the last of which triggers the exploit. Any replay of the flows must include the
attack packet and all 100 innocent requests. This class is particularly difficult
because, to the untrained eye, the 100th packet is very suspicious, while the
true attack packet does not necessarily stand out. Worst of all, naively testing
against that 100th packet (because it truly is an innocent request) is almost
always guaranteed to be successful, regardless of the validity of a particular
patch.

In the most pathological case, a particular attack may consist of any combi-
nation of the above classes of attack. That is, an attack may be polymorphic,
spread across multiple TCP flows, and depend on some form of user action.

4.2 Basic Design

The simplest version of a Bloodhound-like system records all network traffic
and replays the entire archive on demand. We feel this approach is untenable; a
system must have finite resources. Therefore, it can only store a finite amount
traffic, and replaying or searching an arbitrarily large archive is likely not feasi-
ble in a timing-dependent application like self-healing software. In this section,
we examine extensions and variations on the basic system with the goal of con-
structing a viable alternative.

We take as a given that we cannot store all flows. Further, the size of the
flow archive must be such that the duration for replaying all flows is reasonable.
Here we consider several heuristics for choosing which flows to store.

– Save a sliding window of the last n days worth of traffic. This heuristic has
some nice properties. It is simple to implement, and it is simple to tune the
size of the archive to optimize storage size or replay duration. To test a patch
against the archive, simply replay all stored flows. The obvious down side to



this heuristic is that it fails against attacks that last longer than the n days
stored in the archive.

– Save a probabilistic window. That is, rather than using a window with a fixed
horizon, probabilistically eject flows from the archive as they age. There are
several options here. One option is that as flows age, they are more likely
to be ejected from the archive. Another option is to eject an archived flow
at random each time a new flow arrives. Regardless of the details chosen,
under this heuristic, the self-healing software can only make probabilistic
statements about its confidence on a particular patch, based on the likelihood
that the entire exploit was contained in the archive tested against.

– Archive those flows identified by a signature-based misuse detector (e.g.,
Snort). This heuristic has the advantage of simplicity, but it is a poor match
for a self-healing system that can patch against new or 0-day attacks. The
self-healing system can patch against never-before-seen attacks, but the test-
ing framework would only be able to replay flows for which there is a pre-
existing signature. We examine this heuristic in more detail in the next
section.

– Archive those flows identified by a payload-based anomaly detection system
such as PayL[24]. This heuristic allows for the detection and storage of sus-
picious flows that have never been seen before, unlike the previous example.
The viability of a heuristic like this depends entirely on the abilities of the
anomaly detection system. If the anomaly detection system has a low false
negative rate, then the likelihood that the entire exploit package is archived
is very high. We examine this heuristic in more detail in the next section.

– A final heuristic that focuses on reducing the duration of testing, rather
than reducing storage space, consists of following taint propagation. As a
particular piece of software handles each flow, it will modify (or taint) various
data structures. If each flow is indexed based on the data structures it taints,
then during testing only those flows which taint the data structures involved
in the patch under question need to be replayed.

These heuristics may also be combined to achieve various points on the trade-
off curve between archive size, replay duration, and confidence. We explore
archiving flows based on signature-based misuse detectors and payload-based
anomaly detectors further in the following section.

5 Experiments

We used tcpdump to collect raw TCP traffic on three machines; a workstation
fae, a server sos17, and a honeypot sos1. For each machine, we collected all
inbound and outbound traffic for a duration of two weeks. The workstation fae

is a Red Hat Linux machine under daily usage for word processing, email and
instant messaging, surfing the web, and an occasional large file transfer. sos17
is a Red Hat Linux machine used predominantly as a web and file server, and
sos1 is an OpenBSD machine set up as a honey pot, with no services running.



We separated the first third of each data set out to use as training on those
sensors (described later) that required it.
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Fig. 1. Comparing TCP flows and packet counts for both training and test data on
each machine. fae.0 and fae.1 are the training and test data from the workstation;
sos1.0 and sos1.1 are the training and test data from the honeypot; sos17.0 and
sos17.1 are the training and test data from the server.

Figure 1 gives a rough profile of each data set. The left-hand columns repre-
sent the packet count in the data set; the right-hand columns show how many
TCP flows there are in each set. In the fae.1 data set, for example, there were
several large file transfers in the collection period, so the packet count is high,
but the TCP flow count is low. Conversely, the sos17.0 data set shows a web
server, where there are only a few packets in each new TCP flow, so the packet
and flow counts are closer together.

For each data set, we performed several experiments in order to explore what
kind of data-set reduction we could get from signature-based misuse detectors
and from payload-based anomaly detectors. For the former, we used Snort, a
popular open-source IDS, and for the latter, we used Anagram, a payload-based
anomaly detection system.

Figure 2 shows the reduction of the data set after filtering through Snort.
Each complete tcpdump file was processed through Snort and we retained only
those TCP flows that generated alerts. A large percentage of these alerts were
ICMP destination-unreachable alerts related to the firewall mechanism on the
Linux machines. We further filtered these alerts to give a final working set of
suspicious flows. The left-hand bars in Figure 2 represent the raw packet counts
from each data set; the middle bars represent all packets which were alerted



100000

200000

300000

400000

500000

600000

700000

800000

Snort+DU alerts

Snort alerts

Packets

0.0

312.5

625.0

937.5

1250.0

sos17.1sos17.0sos1.1sos1.0fae.1fae.0

..
.

..
.

..
.

..
. ..
.

..
...

.

Data sets

C
o

u
n

t

Fig. 2. Data sets after filtering with Snort. On firewalled machines, Snort generates
destination unreachable alerts on all messages destined to blocked networks. We filter
these messages to further reduce the data set.

by Snort; the right-hand bars are only those alert packets which are not just
destination-unreachable alerts. As the graph shows, in all cases, there was a
better than 99.9% reduction in the size of the data set.

Figure 3 shows the same data sets when filtered by the payload-based misuse
detection system called Anagram. Anagram requires a training period, so the
first third of each dataset was used for the training data, while the latter two
thirds were used as the test data. The graph in Figure 3 shows that Anagram
can reduce the data set by 65%-80%.

Note that, while Anagram is apparently less effective than Snort (99.9% vs.
65% reduction), it is not so clear cut, because Anagram is generating alerts on
all suspicious packets, while Snort can only generate alerts on those packets that
match known patterns.

6 Evaluation

The major purpose of our experiments was to determine if it was feasible to
reduce the amount of traffic that an ARV system would need to store. ARV is
essentially a problem of search; we can reduce search time by indexing flows, but
indexing for all possible terms isn’t feasible and still requires additional stor-
age for the index itself. Performing an online search, even of an indexed corpus,
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Fig. 3. The three test data sets after filtering by Anagram.

can be sped up if the size of the corpus is reduced. An apparent application of
this principle is Google’s search: while a large portion of the Web is indexed of-
fline, Google uses the PageRank algorithm to identify the most likely items that
would be interesting as the result of a particular search – it does not consider all
pages at once. An ARV system like Bloodhound would need to create a “Packe-
tRank” system that only considers packets relevant to the current vulnerability
or exploit.

Based on the experimental setup described in Section 5, we obtained fairly
good results when using straightforward packet classification schemes (Snort and
Anagram1). Figure 2 and Figure 3 illustrate the results obtained. In particular,
we are able to achieve a reduction in flows of greater than 99% for most of the
dumps using Snort and a filtered subset of the Snort alerts. While Anagram does
not perform as well, the results are still encouraging. Filtering using Anagram
obtains a reduction that ranges from about 60% to 85%. As explained in Sec-
tion 2, using a misuse-based detector with well-known signatures of old exploits
is not optimal for filtering flows that may contain previously unseen exploits.
Anomaly-based detectors are better at such a task, and Anagram indicates that
they would be useful for ARV.

6.1 Future Work

Our future work on the system focuses largely on the problem of correlating
network flows with host-based events. Since we haven’t yet implemented the
correlation scheme involving marking or indexing flows by what data structures
they touch in the application, we could not evaluate its efficacy or performance
impact. The purpose of this paper is to outline an important challenge, so such
a study is outside of our present scope.

1 Anagram is an anomaly detection system currently under development by other
researchers.



However, our next steps concentrate on mechanisms for marking flows based
on which of an application’s internal data structures the flow “taints.” Design-
ing a systematic and general mechanism (rather than an application-specific, ad

hoc hack) for this type of synchronous audit logging and tagging is an impor-
tant challenge. Such a system breaks the normal abstraction between low-level
network data and high-level application data objects.

Another area of considerable importance is the creation of a standard suite
or benchmark to test self-healing systems against. Such a benchmark does not
exist, and most testing performed in the literature is against self-selected or
synthesized vulnerabilities and exploits. Finally, we hope that this paper raises
a number of questions involving the cross-fertilization of Intrusion Detection
with research on search technologies.
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8 Conclusions

Since many attacks are automated, it appears that defense systems must also
include some degree of autonomy. Recent advances in secure systems have led to
an emerging interest in self-healing software as a solution to this problem. How-
ever, system owners are understandably reluctant to allow automated changes
to their environment and applications in response to attacks.

Testing the auto-generated fix to a system is a critical part of raising the
confidence level in self-healing systems. One part of this testing is the verification
that the micro-patch or changes made by the self-healing mechanism actually
defeat the original attack (or close variations thereof).

This paper identifies the important challenge of Automatic Repair Validation
(ARV): using audit information to test the resilience and efficacy of a self-healing
fix. We propose Bloodhound, a system for recording suspicious network flows and
replaying those flows that are related to the exercise of a particular vulnerability.
The design process of this system reveals a number of challenging problems that
the research community needs to address in order to make automatically self-
securing systems a reality.



References

1. K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. D.
Keromytis. Detecting Targeted Attacks Using Shadow Honeypots. In Proceedings
of the 14th USENIX Security Symposium., August 2005.

2. R. Chinchani and E. V. D. Berg. A Fast Static Analysis Approach to Detect Exploit
Code Inside Network Flows. In Proceedings of the 8th International Symposium on
Recent Advances in Intrusion Detection (RAID), pages 284–304, September 2005.

3. M. Costa, J. Crowcroft, M. Castro, and A. Rowstron. Vigilante: End-to-End Con-
tainment of Internet Worms. In Proceedings of the Symposium on Systems and
Operating Systems Principles (SOSP 2005), 2005.

4. W. Cui, V. Paxson, N. C. Weaver, and R. H. Katz. Protocol-Independent Adatpive
Replay of Application Dialog. In Proceedings of the 13st Symposium on Network
and Distributed System Security (NDSS 2006), February 2006.

5. S.-S. Hong and S. F. Wu. On Interactive Internet Traffic Replay. In Proceedings
of the 8th International Symposium on Recent Advances in Intrusion Detection
(RAID), pages 247–264, September 2005.

6. H.-A. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Sig-
nature Detection. In Proceedings of the USENIX Security Conference, 2004.

7. C. Krugel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic Worm
Detection Using Structural Information of Executables. In Proceedings of the
8th International Symposium on Recent Advances in Intrusion Detection (RAID),
pages 207–226, September 2005.

8. C. Krugel, T. Toth, and E. Kirda. Service Specific Anomaly Detection for Network
Intrusion Detection. In Proceedings of the ACM Symposium on Applied Computing
(SAC), 2002.

9. Z. Liang and R. Sekar. Fast and Automated Generation of Attack Signatures:
A Basis for Building Self-Protecting Servers. In Proceedings of the 12th ACM
Conference on Computer and Communications Security (CCS), November 2005.

10. M. E. Locasto, K. Wang, A. D. Keromytis, and S. J. Stolfo. FLIPS: Hybrid Adap-
tive Intrusion Prevention. In Proceedings of the 8th International Symposium on
Recent Advances in Intrusion Detection (RAID), pages 82–101, September 2005.

11. J. Newsome, D. Brumley, and D. Song. Vulnerability–Specific Execution Filter-
ing for Exploit Prevention on Commodity Software. In Proceedings of the 13st

Symposium on Network and Distributed System Security (NDSS 2006), February
2006.

12. J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Signa-
tures for Polymorphic Worms. In Proceedings of the IEEE Symposium on Security
and Privacy, May 2005.

13. J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection, Anal-
ysis, and Signature Generation of Exploits on Commodity Software. In The 12th

Annual Network and Distributed System Security Symposium, February 2005.

14. F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating Bugs as Allergies –
A Safe Method to Survive Software Failures. In Proceedings of the Symposium on
Systems and Operating Systems Principles (SOSP 2005), 2005.

15. M. Rinard, C. Cadar, D. Dumitran, D. Roy, and T. Leu. A Dynamic Technique
for Eliminating Buffer Overflow Vulnerabilities (and Other Memory Errors). In
Proceedings 20th Annual Computer Security Applications Conference (ACSAC)
2004, December 2004.



16. M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and J. W Beebee. Enhancing
Server Availability and Security Through Failure-Oblivious Computing. In Pro-
ceedings 6th Symposium on Operating Systems Design and Implementation (OSDI),
December 2004.

17. S. Sidiroglou, G. Giovanidis, and A. D. Keromytis. A Dynamic Mechanism for
Recovering from Buffer Overflow Attacks. In Proceedings of the 8th Information
Security Conference (ISC), pages 1–15, September 2005.

18. S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis. Building a Reactive
Immune System for Software Services. In Proceedings of the USENIX Annual
Technical Conference, pages 149–161, April 2005.

19. S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprinting.
In Proceedings of Symposium on Operating Systems Design and Implementation
(OSDI), 2004.

20. A. Smirnov and T. Chiueh. DIRA: Automatic Detection, Identification, and Repair
of Control-Hijacking Attacks. In The 12th Annual Network and Distributed System
Security Symposium, February 2005.

21. A. Somayaji and S. Forrest. Automated Response Using System-Call Delays. In
Proceedings of the 9th USENIX Security Symposium, August 2000.

22. T. Toth and C. Kruegel. Accurate Buffer Overflow Detection via Abstract Payload
Execution. In Proceedings of the 5th International Symposium on Recent Advances
in Intrusion Detection (RAID), pages 274–291, October 2002.

23. H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield: Vulnerability-
Driven Network Filters for Preventing Known Vulnerability Exploits. In ACM
SIGCOMM, August 2004.

24. K. Wang and S. J. Stolfo. Anomalous Payload-based Network Intrusion Detection.
In Proceedings of the 7th International Symposium on Recent Advances in Intrusion
Detection (RAID), pages 203–222, September 2004.

25. J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt. Automatic Diagnosis and Re-
sponse to Memory Corruption Vulnerabilities. In Proceedings of the 12th ACM
Conference on Computer and Communications Security (CCS), November 2005.


